S.-T. Yau College Student Mathematics Contests 2022

Geometry and Topology

Solve every problem.

Problem 1. The topological space X X XXX is obtained by gluing two tetrahedra as illustrated by the figure. There is a unique way to glue the faces of one tetrahedron to the other so that the arrows are matched. The resulting complex has 2 tetrahedra, 4 triangles, 2 edges and 1 vertex.
Show that X X XXX can not have the homotopy type of a compact manifold without boundary.
Solution: One can calculate the (Z-coefficient) simplicial homology to see that H 0 ( X ) = Z , H 1 ( X ) = Z 2 , H 2 ( X ) = Z / 2 H 0 ( X ) = Z , H 1 ( X ) = Z 2 , H 2 ( X ) = Z / 2 H_(0)(X)=Z,H_(1)(X)=Z^(2),H_(2)(X)=Z//2H_{0}(X)=\mathbf{Z}, H_{1}(X)=\mathbf{Z}^{2}, H_{2}(X)=\mathbf{Z} / 2H0(X)=Z,H1(X)=Z2,H2(X)=Z/2, H 3 ( X ) = Z H 3 ( X ) = Z H_(3)(X)=ZH_{3}(X)=\mathbf{Z}H3(X)=Z. This does not satisfy Poincaré duality, hence the X X XXX can not have the homotopy type of a compact manifold without boundary. Or one can notice that X X XXX has Euler characteristic 1, but a closed odd-dimensional manifold has Euler characteristic 0 .
Problem 2. Suppose ( M , h M , h M,hM, hM,h ) is a closed (i.e., compact without boundary) Riemannian manifold, and h h hhh is a metric on M M MMM with sec ( h ) 1 sec ( h ) 1 sec(h) <= -1\sec (h) \leq-1sec(h)1, where sec ( h ) sec ( h ) sec(h)\sec (h)sec(h) is the sectional curvature. Suppose Σ Σ Sigma\SigmaΣ is a closed minimal surface with genus g g ggg in ( M , h ) ( M , h ) (M,h)(M, h)(M,h). Show that
Area ( Σ ) 4 π ( g 1 ) Area ( Σ ) 4 π ( g 1 ) Area(Sigma) <= 4pi(g-1)\operatorname{Area}(\Sigma) \leq 4 \pi(g-1)Area(Σ)4π(g1)

Remark: A minimal surface is an immersed surface with constant mean curvature 0.

Solution: For any surface Σ Σ Sigma\SigmaΣ in a Riemannian manifold ( M , h ) ( M , h ) (M,h)(M, h)(M,h), let x Σ x Σ x in Sigmax \in \SigmaxΣ, and { e 1 , e 2 , e 3 , e 4 , , e n } e 1 , e 2 , e 3 , e 4 , , e n {e_(1),e_(2),e_(3),e_(4),dots,e_(n)}\left\{e_{1}, e_{2}, e_{3}, e_{4}, \ldots, e_{n}\right\}{e1,e2,e3,e4,,en} be a local orthonormal frame of M M MMM at x x xxx where e 1 e 1 e_(1)e_{1}e1 and e 2 e 2 e_(2)e_{2}e2 are tangent to Σ Σ Sigma\SigmaΣ and e 3 , , e n e 3 , , e n e_(3),dots,e_(n)e_{3}, \ldots, e_{n}e3,,en are normal to Σ Σ Sigma\SigmaΣ. The Gauss equation shows that
χ ( x ) = K 12 + A 11 , A 22 A 12 , A 12 , = K 12 + | H | 2 2 | A | 2 2 . χ ( x ) = K 12 + A 11 , A 22 A 12 , A 12 , = K 12 + | H | 2 2 | A | 2 2 . {:[chi(x)=K_(12)+(:A_(11),A_(22):)-(:A_(12),A_(12):)","],[=K_(12)+(|H|^(2))/(2)-(|A|^(2))/(2).]:}\begin{aligned} \chi(x) & =K_{12}+\left\langle A_{11}, A_{22}\right\rangle-\left\langle A_{12}, A_{12}\right\rangle, \\ & =K_{12}+\frac{|H|^{2}}{2}-\frac{|A|^{2}}{2} . \end{aligned}χ(x)=K12+A11,A22A12,A12,=K12+|H|22|A|22.
Here, K 12 K 12 K_(12)K_{12}K12 is the sectional curvature of T x Σ T M T x Σ T M T_(x)Sigma sub TMT_{x} \Sigma \subset T MTxΣTM. Integrate this identity over Σ Σ Sigma\SigmaΣ and use the Gauss-Bonnet theorem; we get
2 π χ ( Σ ) = Σ ( K 12 + | H | 2 2 | A | 2 2 ) 2 π χ ( Σ ) = Σ K 12 + | H | 2 2 | A | 2 2 2pi chi(Sigma)=int_(Sigma)(K_(12)+(|H|^(2))/(2)-(|A|^(2))/(2))2 \pi \chi(\Sigma)=\int_{\Sigma}\left(K_{12}+\frac{|H|^{2}}{2}-\frac{|A|^{2}}{2}\right)2πχ(Σ)=Σ(K12+|H|22|A|22)
Equivalently,
Area ( Σ ) = 4 π ( g 1 ) + Γ ( 1 + K 12 + | H | 2 2 | A | 2 2 ) Area ( Σ ) = 4 π ( g 1 ) + Γ 1 + K 12 + | H | 2 2 | A | 2 2 Area(Sigma)=4pi(g-1)+int_(Gamma)(1+K_(12)+(|H|^(2))/(2)-(|A|^(2))/(2))\operatorname{Area}(\Sigma)=4 \pi(g-1)+\int_{\Gamma}\left(1+K_{12}+\frac{|H|^{2}}{2}-\frac{|A|^{2}}{2}\right)Area(Σ)=4π(g1)+Γ(1+K12+|H|22|A|22)
where g g ggg is the genus of Σ Σ Sigma\SigmaΣ. Σ Σ Sigma\SigmaΣ being minimal implies that H = 0 H = 0 H=0H=0H=0, and sec ( h ) 1 sec ( h ) 1 sec(h) <= -1\sec (h) \leq-1sec(h)1 implies that K 12 1 K 12 1 K_(12) <= -1K_{12} \leq-1K121. Se we get
Area ( Σ ) 4 π ( g 1 ) Area ( Σ ) 4 π ( g 1 ) Area(Sigma) <= 4pi(g-1)\operatorname{Area}(\Sigma) \leq 4 \pi(g-1)Area(Σ)4π(g1)
Problem 3. For any topological space X X XXX, the n n nnn-th symmetric product of X X XXX is the quotient of the Cartesian product ( X ) n ( X ) n (X)^(n)(X)^{n}(X)n by the action of the symmetric group S n S n S_(n)S_{n}Sn, which permutes the factors in ( X ) n ( X ) n (X)^(n)(X)^{n}(X)n. This space is denoted by S P n ( X ) S P n ( X ) SP^(n)(X)\mathrm{SP}^{n}(X)SPn(X), and the topology is the natural quotient topology induced from ( X ) n ( X ) n (X)^(n)(X)^{n}(X)n.
Show that S P n ( C P 1 ) S P n C P 1 SP^(n)(CP^(1))\mathrm{SP}^{n}\left(\mathbf{C} \mathbf{P}^{1}\right)SPn(CP1) is homeomorphic to C P n C P n CP^(n)\mathbf{C P}{ }^{n}CPn. Here C P 1 C P 1 CP^(1)\mathbf{C} \mathbf{P}^{1}CP1 and C P n C P n CP^(n)\mathbf{C P}{ }^{n}CPn are equipped with the manifold topology.
Solution: C P n C P n CP^(n)\mathbf{C P}^{n}CPn can be interpreted as the space of homogeneous polynomials in two variables of degree n n nnn modulo multiplication by a non-zero complex constant. Each polynomial is determined up to a constant complex number by its n n nnn complex roots on C P P 1 C P P 1 CPP^(1)\mathbf{C P} \mathbf{P}^{1}CPP1. On the other hand, S P n ( C P 1 ) S P n C P 1 SP^(n)(CP^(1))\mathrm{SP}^{n}\left(\mathbf{C P}^{1}\right)SPn(CP1) is exactly the n n nnn-tuples of unordered points in C P 1 C P 1 CP^(1)\mathbf{C P}{ }^{1}CP1. This induces a bijection F : S P n ( C P 1 ) C P n F : S P n C P 1 C P n F:SP^(n)(CP^(1))rarrCP^(n)F: \mathrm{SP}^{n}\left(\mathbf{C P}^{1}\right) \rightarrow \mathbf{C P}{ }^{n}F:SPn(CP1)CPn.
It remains to show F F FFF and F 1 F 1 F^(-1)F^{-1}F1 are both continuous. One direction is relatively easy: because the coefficients of the polynomials are determined by the roots via Vieta's formulas, and Vieta's formulas are polynomials, F F FFF is continuous. For the other direction, notice that S P n ( C P 1 ) S P n C P 1 SP^(n)(CP^(1))\mathrm{SP}^{n}\left(\mathbf{C P}^{1}\right)SPn(CP1) is compact (because it is the quotient of a compact space), C P n C P n CP^(n)\mathbf{C P}^{n}CPn is Hausdorff, and F F FFF is a continuous bijection, so F 1 F 1 F^(-1)F^{-1}F1 is also a continuous bijection.
Problem 4. Let M M MMM be a complete noncompact Riemannian manifold. M M MMM is said to have the geodesic loops to infinity property if for any [ α ] π 1 ( M ) [ α ] π 1 ( M ) [alpha]inpi_(1)(M)[\alpha] \in \pi_{1}(M)[α]π1(M) and any compact subset K M K M K sub MK \subset MKM, there is a geodesic loop β M K β M K beta sub M\\K\beta \subset M \backslash KβMK, such that β β beta\betaβ is homotopic to α α alpha\alphaα.
Show that if a complete noncompact Riemannian manifold M M MMM does not have the geodesic loops to infinity property, then there is a line in the universal cover M ~ M ~ widetilde(M)\widetilde{M}M~.
Remark: A line is a geodesic γ : ( , ) M γ : ( , ) M gamma:(-oo,oo)rarr M\gamma:(-\infty, \infty) \rightarrow Mγ:(,)M such that dist ( γ ( s ) , γ ( t ) ) = | s t | ( γ ( s ) , γ ( t ) ) = | s t | (gamma(s),gamma(t))=|s-t|(\gamma(s), \gamma(t))=|s-t|(γ(s),γ(t))=|st|; a geodesic loop is a curve β : [ 0 , 1 ] M β : [ 0 , 1 ] M beta:[0,1]rarr M\beta:[0,1] \rightarrow Mβ:[0,1]M that is a geodesic and β ( 0 ) = β ( 1 ) β ( 0 ) = β ( 1 ) beta(0)=beta(1)\beta(0)=\beta(1)β(0)=β(1).
Solution: Suppose [ α ] π 1 ( M ) [ α ] π 1 ( M ) [alpha]inpi_(1)(M)[\alpha] \in \pi_{1}(M)[α]π1(M) is a loop that M M MMM has no geodesic loops to infinity with respect to α , K α , K alpha,K\alpha, Kα,K. Suppose α α alpha\alphaα is based at x 0 x 0 x_(0)x_{0}x0. Let K K KKK be a compact subset K B R ( x 0 ) M K B R x 0 M K subB_(R)(x_(0))sub MK \subset B_{R}\left(x_{0}\right) \subset MKBR(x0)M. Let us choose x i M x i M x_(i)in Mx_{i} \in MxiM with dist ( x 0 , x i ) > R dist x 0 , x i > R dist(x_(0),x_(i)) > R\operatorname{dist}\left(x_{0}, x_{i}\right)>Rdist(x0,xi)>R. Minimize curves passing through x i x i x_(i)x_{i}xi in the homotopy class [ α ] [ α ] [alpha][\alpha][α] to get a geodesic loop γ i γ i gamma_(i)\gamma_{i}γi that is based at x i x i x_(i)x_{i}xi. Because M M MMM has no geodesic loops to infinity with respect to α , γ i α , γ i alpha,gamma_(i)\alpha, \gamma_{i}α,γi intersects with K K KKK; let y i K γ i y i K γ i y_(i)in K nngamma_(i)y_{i} \in K \cap \gamma_{i}yiKγi.
Now we go to the universal cover M ~ M ~ tilde(M)\tilde{M}M~, and consider the lift γ ~ i γ ~ i tilde(gamma)_(i)\tilde{\gamma}_{i}γ~i of γ i γ i gamma_(i)\gamma_{i}γi, such that γ ~ i γ ~ i tilde(gamma)_(i)\tilde{\gamma}_{i}γ~i connects x ~ i x ~ i tilde(x)_(i)\tilde{x}_{i}x~i and [ α ] x ~ i [ α ] x ~ i [alpha] tilde(x)_(i)[\alpha] \tilde{x}_{i}[α]x~i in the universal cover. We assume y ~ i y ~ i tilde(y)_(i)\tilde{y}_{i}y~i is the lift of y i y i y_(i)y_{i}yi lying on γ ~ i γ ~ i tilde(gamma)_(i)\tilde{\gamma}_{i}γ~i. Let us estimate the distance d i d i d_(i)d_{i}di between y ~ i y ~ i tilde(y)_(i)\tilde{y}_{i}y~i and [ α ] x i [ α ] x i [alpha]x_(i)[\alpha] x_{i}[α]xi. Because γ ~ i γ ~ i tilde(gamma)_(i)\tilde{\gamma}_{i}γ~i is a minimizing geodesic segment, we have dist ( y ~ i , [ α ] x ~ i ) dist y ~ i , [ α ] x ~ i dist( tilde(y)_(i),[alpha] tilde(x)_(i))\operatorname{dist}\left(\tilde{y}_{i},[\alpha] \tilde{x}_{i}\right)dist(y~i,[α]x~i) equals to the length of the geodesic line segment γ ~ i γ ~ i tilde(gamma)_(i)\tilde{\gamma}_{i}γ~i from y ~ i y ~ i tilde(y)_(i)\tilde{y}_{i}y~i to [ α ] x ~ i [ α ] x ~ i [alpha] tilde(x)_(i)[\alpha] \tilde{x}_{i}[α]x~i. This is exactly the length of the part of the geodesic loop that connects y i y i y_(i)y_{i}yi and x i x i x_(i)x_{i}xi. By the triangle inequality, d i m i R d i m i R d_(i) >= m_(i)-Rd_{i} \geq m_{i}-RdimiR. Similarly, the distance e i e i e_(i)e_{i}ei between y ~ i y ~ i tilde(y)_(i)\tilde{y}_{i}y~i and x i x i x_(i)x_{i}xi satisfies the bound e i m i R e i m i R e_(i) >= m_(i)-Re_{i} \geq m_{i}-ReimiR.
Therefore, there is a geodesic starting from y ~ i y ~ i tilde(y)_(i)\tilde{y}_{i}y~i that extends to both directions with length longer than m i R m i R m_(i)-Rm_{i}-RmiR. Notice that y i K y i K y_(i)in Ky_{i} \in KyiK, so for any i i iii, we can choose y ~ i y ~ i tilde(y)_(i)\tilde{y}_{i}y~i in some fixed compact domain of M ~ M ~ widetilde(M)\widetilde{M}M~. Then as m i m i m_(i)rarr oom_{i} \rightarrow \inftymi, we can pass to a subsequence of y ~ i y ~ i tilde(y)_(i)\tilde{y}_{i}y~i to get a limit y ~ y ~ tilde(y)_(oo)\tilde{y}_{\infty}y~, and a line passing through this point.
Problem 5. A topological space X X XXX is called an H H HHH-space if there exist e X e X e in Xe \in XeX and μ : X × X X μ : X × X X mu:X xx X rarr X\mu: X \times X \rightarrow Xμ:X×XX such that μ ( e , e ) = e μ ( e , e ) = e mu(e,e)=e\mu(e, e)=eμ(e,e)=e and the maps x μ ( e , x ) x μ ( e , x ) x rarr mu(e,x)x \rightarrow \mu(e, x)xμ(e,x) and x μ ( x , e ) x μ ( x , e ) x rarr mu(x,e)x \rightarrow \mu(x, e)xμ(x,e) are both homotopic to the identity map.
(a) Show that the fundamental group of an H -space is Abelian.
(b) Show that the sphere S 2022 S 2022 S^(2022)S^{2022}S2022 is not an H-space.
Historic Remark: "H" was suggested by Jean-Pierre Serre in recognition of the contributions in Topology by Heinz Hopf.

Solution:

(a) Let [ f ] [ f ] [f][f][f] and [ g ] [ g ] [g][g][g] be two elements in the fundamental group of X X XXX. We may assume f : [ 0 , 1 ] X f : [ 0 , 1 ] X f:[0,1]rarr Xf:[0,1] \rightarrow Xf:[0,1]X and g : [ 0 , 1 ] X g : [ 0 , 1 ] X g:[0,1]rarr Xg:[0,1] \rightarrow Xg:[0,1]X are both continuous maps with f ( 0 ) = f ( 1 ) = g ( 0 ) = g ( 1 ) = e f ( 0 ) = f ( 1 ) = g ( 0 ) = g ( 1 ) = e f(0)=f(1)=g(0)=g(1)=ef(0)=f(1)=g(0)=g(1)=ef(0)=f(1)=g(0)=g(1)=e.
Now we define a map F : [ 0 , 1 ] × [ 0 , 1 ] X F : [ 0 , 1 ] × [ 0 , 1 ] X F:[0,1]xx[0,1]rarr XF:[0,1] \times[0,1] \rightarrow XF:[0,1]×[0,1]X by F ( x , y ) = μ ( f ( x ) , g ( y ) ) F ( x , y ) = μ ( f ( x ) , g ( y ) ) F(x,y)=mu(f(x),g(y))F(x, y)=\mu(f(x), g(y))F(x,y)=μ(f(x),g(y)). Then F ( , 0 ) F ( , 0 ) F(*,0)F(\cdot, 0)F(,0) is homotopic to f f fff and F ( 0 , ) F ( 0 , ) F(0,*)F(0, \cdot)F(0,) is homotopic to g g ggg. It is clear that
h ( s , t ) = { F ( ( 1 t ) 2 s , t 2 s ) s [ 0 , 1 2 ] F ( t 2 ( s 1 2 ) , ( 1 t ) 2 ( s 1 2 ) ) s [ 1 2 , 1 ] h ( s , t ) = F ( ( 1 t ) 2 s , t 2 s )      s 0 , 1 2 F t 2 s 1 2 , ( 1 t ) 2 s 1 2      s 1 2 , 1 h(s,t)={[F((1-t)2s","t*2s),s in[0,(1)/(2)]],[F(t*2(s-(1)/(2)),(1-t)*2(s-(1)/(2))),s in[(1)/(2),1]]:}h(s, t)= \begin{cases}F((1-t) 2 s, t \cdot 2 s) & s \in\left[0, \frac{1}{2}\right] \\ F\left(t \cdot 2\left(s-\frac{1}{2}\right),(1-t) \cdot 2\left(s-\frac{1}{2}\right)\right) & s \in\left[\frac{1}{2}, 1\right]\end{cases}h(s,t)={F((1t)2s,t2s)s[0,12]F(t2(s12),(1t)2(s12))s[12,1]
is a homotopy from a curve representing [ f ] [ g ] [ f ] [ g ] [f]*[g][f] \cdot[g][f][g] to a curve representing [ g ] [ f ] [ g ] [ f ] [g]*[f][g] \cdot[f][g][f]. Therefore [ f ] [ g ] = [ g ] [ f ] [ f ] [ g ] = [ g ] [ f ] [f]*[g]=[g]*[f][f] \cdot[g]=[g] \cdot[f][f][g]=[g][f], and hence π 1 ( X ) π 1 ( X ) pi_(1)(X)\pi_{1}(X)π1(X) is Abelian.
(b) We will show that S 2 n S 2 n S^(2n)S^{2 n}S2n is not a H H HHH-space. In the following we consider R R R\mathbf{R}R-coefficient cohomology. Suppose S k S k S^(k)S^{k}Sk is an H -space, then the map μ μ mu\muμ induces
μ : H ( S k ) H ( S k ) H ( S k ) μ : H S k H S k H S k mu^(**):H^(**)(S^(k))rarrH^(**)(S^(k))oxH^(**)(S^(k))\mu^{*}: H^{*}\left(S^{k}\right) \rightarrow H^{*}\left(S^{k}\right) \otimes H^{*}\left(S^{k}\right)μ:H(Sk)H(Sk)H(Sk)
and for a generator x H k ( S k ) , μ ( x ) = 1 x + x 1 x H k S k , μ ( x ) = 1 x + x 1 x inH^(k)(S^(k)),mu^(**)(x)=1ox x+x ox1x \in H^{k}\left(S^{k}\right), \mu^{*}(x)=1 \otimes x+x \otimes 1xHk(Sk),μ(x)=1x+x1 (to see this, one can consider the composition X X × X μ X X X × X μ X X↪X xx Xrarr"mu"XX \hookrightarrow X \times X \xrightarrow{\mu} XXX×XμX, where the inclusion is a ( a , e ) a ( a , e ) a rarr(a,e)a \rightarrow(a, e)a(a,e) or a ( e , a ) ) a ( e , a ) ) a rarr(e,a))a \rightarrow(e, a))a(e,a)).
The universality of the cup product gives
μ ( x x ) = ( 1 x + x 1 ) ( 1 x + x 1 ) μ ( x x ) = ( 1 x + x 1 ) ( 1 x + x 1 ) mu^(**)(x uu x)=(1ox x+x ox1)uu(1ox x+x ox1)\mu^{*}(x \cup x)=(1 \otimes x+x \otimes 1) \cup(1 \otimes x+x \otimes 1)μ(xx)=(1x+x1)(1x+x1)
The left hand side is clearly 0 , and the right hand side is ( 1 + ( 1 ) k 2 ) x x 1 + ( 1 ) k 2 x x (1+(-1)^(k^(2)))x ox x\left(1+(-1)^{k^{2}}\right) x \otimes x(1+(1)k2)xx. Here, notice that ( a b ) ( c d ) = ( a b ) ( c d ) = (a ox b)uu(c ox d)=(a \otimes b) \cup(c \otimes d)=(ab)(cd)= ( 1 ) | deg ( b ) | | deg ( c ) | ( a c ) ( b d ) ( 1 ) | deg ( b ) | | deg ( c ) | ( a c ) ( b d ) (-1)^(|deg(b)||deg(c)|)(a uu c)ox(b uu d)(-1)^{|\operatorname{deg}(b)||\operatorname{deg}(c)|}(a \cup c) \otimes(b \cup d)(1)|deg(b)||deg(c)|(ac)(bd). Thus, S k S k S^(k)S^{k}Sk being an H-space implies that k k kkk is odd.
Remark: In fact, Adams' Hopf invariant one theorem shows that among all the spheres, only S 0 , S 1 , S 3 , S 7 S 0 , S 1 , S 3 , S 7 S^(0),S^(1),S^(3),S^(7)S^{0}, S^{1}, S^{3}, S^{7}S0,S1,S3,S7 are H H HHH spaces.
Problem 6. A hypersurface Σ R n + 1 Σ R n + 1 Sigma subR^(n+1)\Sigma \subset \mathbf{R}^{\mathbf{n + 1}}ΣRn+1 is called a shrinker if it satisfies the equation
H ( x ) = 1 2 x , n H ( x ) = 1 2 x , n H(x)=(1)/(2)(:x, vec(n):)H(x)=\frac{1}{2}\langle x, \vec{n}\rangleH(x)=12x,n
Here H H HHH is the mean curvature, which is tr A , n tr A , n -(:tr_(A),( vec(n)):)-\left\langle\operatorname{tr}_{A}, \vec{n}\right\rangletrA,n where A A AAA is the second fundamental form, x x xxx is the position vector, and n n vec(n)\vec{n}n is outer unit normal vector.
(a) Show that S n ( 2 n ) S n ( 2 n ) S^(n)(sqrt(2n))S^{n}(\sqrt{2 n})Sn(2n), the sphere with radius 2 n 2 n sqrt(2n)\sqrt{2 n}2n, is a shrinker.
(b) Show that any compact shrinker without boundary must intersect with S n ( 2 n ) S n ( 2 n ) S^(n)(sqrt(2n))S^{n}(\sqrt{2 n})Sn(2n).

Solution:

(a) One can calculate that for S n ( 2 n ) , A = 1 2 n g n S n ( 2 n ) , A = 1 2 n g n S^(n)(sqrt(2n)),A=-(1)/(sqrt(2n))g vec(n)S^{n}(\sqrt{2 n}), A=-\frac{1}{\sqrt{2 n}} g \vec{n}Sn(2n),A=12ngn, hence H = n 2 n H = n 2 n H=(n)/(sqrt(2n))H=\frac{n}{\sqrt{2 n}}H=n2n. Also, x = 2 n n x = 2 n n x=sqrt(2n) vec(n)x=\sqrt{2 n} \vec{n}x=2nn, so S n ( 2 n ) S n ( 2 n ) S^(n)(sqrt(2n))S^{n}(\sqrt{2 n})Sn(2n) satisfies the shrinker's equation.
(b) Suppose Σ Σ Sigma\SigmaΣ is a closed shrinker. On any hypersurface, Σ x = I Σ x = I grad_(Sigma)x=I\nabla_{\Sigma} x=IΣx=I, where I I III is the ( n + 1 ) × ( n + 1 ) ( n + 1 ) × ( n + 1 ) (n+1)xx(n+1)(n+1) \times(n+1)(n+1)×(n+1) matrix that is the identity on T x Σ T x Σ T x Σ T x Σ T_(x)Sigma oxT_(x)SigmaT_{x} \Sigma \otimes T_{x} \SigmaTxΣTxΣ and vanishes elsewhere, Δ Σ x = H n Δ Σ x = H n Delta_(Sigma)x=-H vec(n)\Delta_{\Sigma} x=-H \vec{n}ΔΣx=Hn, so
Δ Σ | x | 2 = 2 Σ x , Σ x + 2 Δ Σ x , x = 2 n 2 x , n 2 Δ Σ | x | 2 = 2 Σ x , Σ x + 2 Δ Σ x , x = 2 n 2 x , n 2 Delta_(Sigma)|x|^(2)=2(:grad_(Sigma)x,grad_(Sigma)x:)+2(:Delta_(Sigma)x,x:)=2n-2(:x, vec(n):)^(2)\Delta_{\Sigma}|x|^{2}=2\left\langle\nabla_{\Sigma} x, \nabla_{\Sigma} x\right\rangle+2\left\langle\Delta_{\Sigma} x, x\right\rangle=2 n-2\langle x, \vec{n}\rangle^{2}ΔΣ|x|2=2Σx,Σx+2ΔΣx,x=2n2x,n2
Consider x max x max  x_("max ")x_{\text {max }}xmax  such that | x | 2 | x | 2 |x|^(2)|x|^{2}|x|2 attains the maximum, and x min x min  x_("min ")x_{\text {min }}xmin  such that | x | 2 | x | 2 |x|^(2)|x|^{2}|x|2 attains the minimum. First let us consider x min 0 x min 0 x_(min)!=0x_{\min } \neq 0xmin0. Differentiating | x | 2 | x | 2 |x|^(2)|x|^{2}|x|2 shows that x max x max x_(max)x_{\max }xmax and x min x min x_(min)x_{\min }xmin are normal to the tangent hyperplane, and x . , n 2 = | x . | 2 x . , n 2 = | x . | 2 (:x., vec(n):)^(2)=|x.|^(2)\langle x ., \vec{n}\rangle^{2}=|x .|^{2}x.,n2=|x.|2 for = max = max *=max\cdot=\max=max or = min = min *=min\cdot=\min=min. Then Δ Σ | x | 2 0 Δ Σ | x | 2 0 Delta_(Sigma)|x|^(2) <= 0\Delta_{\Sigma}|x|^{2} \leq 0ΔΣ|x|20 at x max x max x_(max)x_{\max }xmax, hence 2 n x max , n 2 0 2 n x max , n 2 0 2n-(:x_(max),( vec(n)):)^(2) <= 02 n-\left\langle x_{\max }, \vec{n}\right\rangle^{2} \leq 02nxmax,n20. This implies that | x max | 2 2 n x max 2 2 n |x_(max)|^(2) >= 2n\left|x_{\max }\right|^{2} \geq 2 n|xmax|22n. Similarly, Δ Σ | x | 2 0 Δ Σ | x | 2 0 Delta_(Sigma)|x|^(2) >= 0\Delta_{\Sigma}|x|^{2} \geq 0ΔΣ|x|20 at x min x min x_(min)x_{\min }xmin, and | x min | 2 2 n x min 2 2 n |x_(min)|^(2) <= 2n\left|x_{\min }\right|^{2} \leq 2 n|xmin|22n. Finally, if x min = 0 x min = 0 x_(min)=0x_{\min }=0xmin=0, then it is clear | x min | 2 2 n x min 2 2 n |x_(min)|^(2) <= 2n\left|x_{\min }\right|^{2} \leq 2 n|xmin|22n. Therefore Σ Σ Sigma\SigmaΣ must intersect S n ( 2 n ) S n ( 2 n ) S^(n)(sqrt(2n))S^{n}(\sqrt{2 n})Sn(2n).